1.3 LINEAR PROGRAMMING PROBLEM-
GRAPHICAL SOLUTION

INTRODUCTION
Graphical method is applicable only ifthe LPP
contains atmost two decision variables.

Feasible Region
: - A region which satisfies all the constraints
including non-negativity constraints is called feasible region.

Graphical Method Procedurel.3.1
Stepl:
Identify the objective function, decision variables

and the constraints.

Step2:
Take each of the given constraint as equality sign
constraints, since there are either one variable
or two variable constraints which represents
straight lines, so plot each straight lines of the
constraint equation.

Step3:
Shade the region of the given constraints which
are either below the straight line or above the
straight line.

Step4:
Find out the feasible region ie common region
which satisfies all the constraints,

L.Henry 17
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210 + Operations Research

Current best lower bound. This is the best lower bound (highest in the case of maximization
problem and lowest in the case of minimization problem) among the lower bounds of all the fathomed
nodes. Initially, it is assumed as infinity for the root node.

Branch-and-bound algorithm applied to maximization problem

Step 1. Solve the given linear programming problem graphically. Set, the current best lower bound,
ZB as oo,

Step 2: Check, whether the problem has integer solution. If yes, print the current solution as the
optimal solution and stop; otherwise go to step 3.

Step 3: Identify the variable X; which has the maximum fractional part as the branching variable. (In
case of tie, select the variable which has the highest objective function coefficient.)

Step 4: Create two more problems by including each of the following constraints to the current
problem and solve them.
Xi < Integer part of X,

Xy = Next integer of X w4 {

Step 5: If any one of the new subproblems has infeasible solution or fully integer values for the
decision variables, the corresponding node is fathomed. If a new node has integer values
for the decision variables, update the current best lower bound as the lower bound of that
node if its lower bound is greater than the previous current best lower bound.

Step 6: Are all terminal nodes fathomed? If the answer is yes, go to step 7; otherwise, identify the
node with the highest lower bound and go to step 3.

Step 7: Select the solution of the problem with respect to the fathomed node whose lower bound

is equal to the current best lower bound as the optimal solution.

Example 6.8 Solve the following integer programming problem using branch-and-bound technique.

Maximize Z = 10X, + 20X,
subject to
6X, + 8X, <48

Xy +3X; £12
X1, X5 2 0 and integers

Solution The introduction of the non-negative constraints X; = 0 and X, = 0 will eliminate
the second, third and fourth quadrants of the XX, plane as shown in Figure 6.1.

Now, from the first constraint in equation form
6Xl =+ 8X2 =48

we get X; = 6, when X; = 0; and X; = 8, when X, = 0. Similarly from the second constraint in equation
form
X +3X,=12

we have X, = 4, when X; = 0; and X; = 12, when X, = 0.
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Now, plot the constraints 1 and 2 as shown in Figure 6.1.

X2
8 -

6X, + 8X, < 48

X0 2

B
A s A e wANN (S s s T e B e s s X
12 8 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.1 Feasible region of Example 6.8.

The closed polygon ABCD is the feasible region. The objective function value at each of the corner
points of the closed polygon is computed as follows by substituting its coordinates in the objective
function:

Z(A)=10x0+20x0=0

Z(B)=10x8+20x 0=80

24 12
Z(C)=10x i +20><? =96

Z(D)=10x0+20x4 =80
Since, the type of the objective function is maximization, the solution corresponding to the

maximum Z value is to be selected as the optimum solution. The Z value is maximum for the corner

point C. Hence, the corresponding solution of the continuous linear programming problem is
presented below.

24 12
X5 —, o= 5 Z(optimum) = 96

5 2
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These are jointly shown as problem P; in Figure 6.2. The notations for different types of lower
bound are defined as follows: :

Zy = Upper bound = Z(optimum) of LP problem
Z;, = Lower bound w.r.t. the truncated values of the decision variables

Zp = Current best lower bound

Py
Maximize Z = 10X, + 20X, | X, =
subject to X,

6X, + 8X, < 48 Zy =96
Xy +3X; 212 Z; =780

Xy and X, 2 0 and integers | Z; = oo

Figure 6.2 Solution of given linear programming problem.

Since both the values of X; and X, are not integers, the solution is not optimum from the view pomt
of the given problem. So, the problem is to be modified into two problems by including integes
constraints one by one. The lower bound of the solution of P, is 80. This is nothing but the valse
of the objective function for the truncated values of the decision variables.

The rule for selecting of the variable for branching is explained as follows:

1. Select the variable which has the highest fractional part.

2. If there is a tie, then break the tie by choosing the variable which has the highest objective
function coefficient. ‘

In the continuous solution of the given linear programming problem P,, the variable X; has the
highest fractional part (4/5). Hence, this variable is selected for further branching as shown =
Figure 6.3.

P,

Maximize Z = 10X, + 20X,
subject to
6X1 + 8/Y2 548
X +3X, 512
Xy, X; 2 0 and integers

Xy 2> .5 X, 24

Py e,

Maximize Z = 10X, + 20X, Maximize Z = 10X, + 20X,
subject to subject to
6X, + 8X, < 48 6X, + 8X; < 48
il Ll X, +3X, <12
XY 25 X| <4
X1, X, 2 0 and integers X, X3 2 0 and integers

Figure 6.3 Branching from P;.
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In Figure 6.3, the problems, P, and P; are generated by adding an additional constraint. The
subproblem, P, is created by introducing ‘X, > 5° in problem P,, and the problem P; is created by
introducing ‘X; £ 4’ in problem P;. The corresponding effects in slicing the non-integer feasible region
are shown in Figures 6.4 and 6.5, respectively. The solution for each of the subproblems, P, and P;

X, +8X, < 12

= TRl 1 | T ool
10 11 12 13 14 15

Figure 6.4 TFeasible region of P, after introducing X; > 5 to P,.

is obtained from Figures 6.4 and 6.5, respectively. These are summarized in Figure 6.3. The problem
P has the highest lower bound of 90 among the unfathomed terminal nodes. So, the further branching
is done from this node as shown in Figure 6.6.

In Figure 6.6, the problems, P, and Ps are generated by adding an additional constraint to P,.
The problem, P, is created by including ‘X, > 3’ in problem P,, and problem Ps is created by including
‘X; 27 in problem P,. The corresponding effects in slicing the non-integer feasible region are shown
in Figures 6.7 and 6.8, respectively. The solution for each of the problems P, and Ps is obtained from
Figures 6.7 and 6.8, respectively. The problem P, has infeasible solution. So, this node is fathomed.
The lower bound of the node Ps is 90. But, the solution of the node P; is still non-integer. Now, the
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X

1

!

|

6X, +8X, <48

X;<4

G

X, +3X,<12

It by Fhotnink Ol vaiablt ol oo
5 6 7 8 9 10 11 12 13 14 15

Figure 6.5 Feasible region of P3 after introducing X; < 4 to P;.

Py

Maximize Z = 10X, + 20X,

X1, X, 2 0 and ;ntegers

X =5 subject to
X = 9/4 0X; + 8X, < 48
Zy =95 . Xi+3X, <12
Z, =90 X 25
Xi, X3 2 0 and integers
XZ 23 Xzs 2
P4 —,PS
Maximize Z = 10X, + 20X, Maximize Z = 10X, + 20X,
subject to } subject to
6X, + 8X, < 48 6X, + 8X, < 48
X; +3X, <12 X +3X, <12
X 25 X 25
X, 23 X,<2

X1, X 2 0 and integers

(Infeasible solution)
(fathomed)

Figure 6.6

Branching from P,.

NN

£
X1
f
16/3
2
93.33
90
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6X, +8X,< 48

No Commenvaﬁfeo“
‘. No Feoabla hieglon.

Xi

X, +3X, <12

9 10 11 12 13 14 15

Figure 6.7 Infeasible region of P, after introducing X,

2 3 to Pg.
X2

6X, +8X, <48

X;+3X, <12

X1
10 11 12 13 14 15

Figure 6.8 Feasible region of P

after introducing Xy <2 to Py,
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lower bound of the node Ps is the maximum when compared to that of all other unfathomed terminal
nodes (only Ps) at this stage. So, the further branching should be done from the node, Ps as shown
in Figure 6.9.

Ps

Maximize Z = 10X; + 20X, X =
subject to X, =2
6X, + 8X, <48 Zy = 93,

X, +3X, £12 Z, =90
X 5
X, £ 2

X, X, 2 0 and integers

IV IAIA

526 X, <5

P6 'P7

Maximize Z = 10X, + 20X; Maximize Z = 10X, + 20X,
subject to subject to
6X, + 8X3 6X, + 8X; < 48
Xy +#3X; X+ 3% <12
| Xy 2z 5
X, X < 2
X2 6 <5
X,, X, 2 0 and integers X,, X, 2 0 and integers
X, =6, X,=232, Zy=90and Z; = 80 =5 %=>2%,=9=1, Zg =90
(Fathomed) (Fathomed)

Figure 6.9 Branching from Ps.

/\|V|/\l/\
—
N W N 00

ININ IV

5o 6X, +8X, <48
— %, 25

Coordinates of K: (6,1.5)
X, +3X,£12

B
[l 5 X,

T T T T T T T T T
sieDuinBrsidiB l67 8 9 10 11 12 13 14 15
X, 2 6
Figure 6.10 Feasible region of Pg after introducing Xj 2 6.touPs.
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6X, + 8X,< 48

E(5, 9/4)

X<B

X, +3X, <12

B
I

Eerewtee T 01 L1
6 7 8 89 MOTAIIE2193144 1115

Figure 6.11 Feasible region of P, after introducing Xj < 5 to Ps.
[Feasible region is the vertical line from M(5, 2) to F(5,0) indicated by *s.]

In Figure 6.9, the problems, Pg and P; are generated by adding an additional constraint to Ps.
The problem Py is created by including “X; = 6’ in the problem Ps and problem P; is created by
including ‘X; €5’ in problem Ps. The corresponding effects in slicing the non-integer feasible region
are shown in Figures 6.10 and 6.11, respectively. The solution for each of the problems Pg and P;
are also obtained from these figures, respectively. The problem P has integer solution. So, it is a
fathomed node. Hence, the current best lower bound (Zp) is updated to its objective function
value, 90.

The solution of the node P is non-integer and its lower bound and upper bound are 80 and
90, respectively. Since, the upper bound of the node Pg is not greater than the current best lower
bound of 90, the node Pg is also fathomed and it has infeasible solution in terms of not fulfilling
integer constraints for the decision variables.

Now, the only unfathomed terminal node is P5. The further branching from this node is shown
in Figure 6.12.

In Figure 6.12, the problems Pg and P, are generated by adding an additional constraint to Pj.
The problem Py is created by including ‘X, = 3’ in problem P; and problem P, is created by including
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X =
X=13
ZU= ZL= 90

‘X, £ 2’ in problem P;. The corresponding effects in slicing the non-
shown in Figures 6.13 and 6.14, respectively. The solution for each of
obtained from the Figures 6.13 and 6.14, respectively. The problems Py
So, these two nodes are fathomed. But the objective function value o
than the current best lower bound of 90. Hence, the current best lo

Py
Maximize Z = 10X, + 20,
subject to X =
6X) + 8X, < 48 X, =8/3
X1 +3X, <12 Zy = 9333
X < 4 Z, =80
X1, X5 2 0 and integers
X, 23 X, <2
Py Py
Maximize Z = 10, + 20X, Maximize Z = 10X, + 20X,
subject to subject to X =
06X, + 8X, < 48 6X) + 8X, < 48 Xo= 2
X, +3X,<12 X +3X, <12 Zy=12Z;=80
X < 4 X < 4
X2 3 X< 2
X1, X; 2 0 and integers Xi, X3 2 0 and integers
(Fathomed) (Fathomed)

Figure 6.12 Branching from Pj.

integer infeasible region are
the problems Pg and P, are
and P, have integer solution.
f these nodes are not greater
wer bound is not updated.

X,
a -
7 -
6 -
6X, +8X,< 48
5
X, <4
D
P
. =3
N o
(3,3)
2 -
X, +3X%,<12
14
[ smtonmnd g

| IR il T | Yeoudly 7 1 =T
B B e D M

T T T T T T X‘l
9 10 11 12 13 14 15

Figure 6.13 Feasible region of Py after introducing X5 > 3 to Pj.
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6X, + 8X, < 48

0% A

Xy +3X,<12

—— . T L
9 10 11 12 13 14 15

Figure 6.14 Feasible region of Py after introducing X, < 2 to Ps.

Now, all the terminal nodes are fathomed. The feasible fathomed node with the current best
lower bound is P;. Hence, its solution is treated as the optimal solution as listed below. A complete
branching tree is shown in Figure 6.15.

Z(optimum) = 90

Note: This problem has alternate optimum solution at Pg with X; = 3, X, = 3, Z(optimum) = 90.

6.5 ZERO-ONE IMPLICIT ENUMERATION ALGORITHM

Zero-one (0-1) programming is a special kind of linear programming problem. In this type of
problem, all the variables are restricted to either 0 or 1. This type of problem exists in many
realistic situations like, capital budgeting problem, assignment problem, scheduling problem, portfolio
problem, etc.
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Py
Maximize Z = 10X, + 20X, | X, = 24/5
subject to X, = 12/5
6X; + 8X, < 48 Zy = 96,
X, + 3%, < 12 gLiSO
X, X, 2 0 and integers B
X, 25 X, <4
| P P,
Maximize Z = 10X, + 20X, Maximize Z = 10X; + 20X,
X = subject to subject to Xi=
X, =9/4 6X; + 8X; < 48 6X, + 8X, < 48 X, =8/3
ZU_95 X] +3X25 12 X| +3X25 12 ZU=9333
Z; =90 Xp2 5 X, < 4 Z;, =80
Xy, X5 2 0 and integers X1, X3 2°0 and integers
X223 X,52
Py Ps
Maximize Z = 10X, + 20X, Maximize Z = 10X, + 20X,
subject to subject to
6X; + 8X, < 48 6X; + 8X, < 48
X +3X, 212 X1 +3X; <12
Xisn & P b
X 213 X
X1, X3 2 0 and integers X1, X5 2 0 and integers
(Infeasible solution) X =163 X =2 %
(Fathomed) Zy=9333__X223 Fafs
< Z, =90 Py P,
Maximize Z = 10X, + 20X, Maximize Z = 10X, + 20X,
subject to subject to
6X; + 8X, < 48 6X) + 8X, < 48
X, +3X <12 X +3X,<12
X2 4 X, < 4
X2 3 X, < 2

X, =
X, =32
Zy =90
Z, =80

Xi, X3 2 0 and integers

Xy, X5 2 0 and integers

X]=3,X2=3,ZU=ZL=9O

(Fathomed)
\
X126 X, <5
Pg Py
Maximize Z = 10X, + 20X, Maximize Z = 10X, + 20X,
subject to subject to
6X, + 8X; < 48 6X; + 8X; < 48
X3 < 12 X +3X; 512
Xi2 5 X2 5
X, < 2 X, 2
Xi2 6 Ha%=s %5
X1, X; 2 0 and integers Xy, X3 2 0 and integers
(Fathomed) (Fathomed)

(Infeasible)
Figure 6.15 Complete tree of Example 6.8.

X =4, X=2 2,=2, =80

(Fathomed)
X =

Xz =2

ZU =90 = ZL
Z* =90
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